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ABSTRACT 

The quantum mechanical implications of the inverse scattering 

transform method and its relationship to the structure of Bethe’s ansatz 

are discussed in the context of the non-linear Schroedinger equation 

(many-body problem) associated with the classical (quantum) field theory 

5%; r#?q$ - 1 Ey$12 - cl4 14. We review the transformation of the 

classical problem to action and angle variables and the derivation of an 

infinite number of polynomial conservation laws. The values of the 

conserved constants are given by the moments of the classical action 

variable. It is suggested that there exists a corresponding set of conserved 

polynomial operators in the quantum field theory and that they reflect the 

conservation of velocity content which characterizes the solution of the 

many-body scattering problem (Bethels ansatz). This implies that the 

quantized action variable is just the occupation number density operator 

in the asymptotic momentum (velocity)-parameter space of Bethels ansatz, 

and that Bethels wave functions are eigenstates of all conserved operators 

with eigenvalues given by the moments of the N-particle distribution in 

asymptotic momentum space. These statements are verified for the first 

four operators, including one which has not previously been studied. 
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I. INTRODUCTION 

The study of exactly solvable models has long been a valuable aid 

to mathematical and physical intuition about non-linear systems. In this 

paper we discuss a connection between two powerful techniques which have 

been central to the developments in different areas of exact (1 + i)- 

dimensional physics. The method known as Bethels ansatz* has among 

its applications a variety of one-dimensional spin chains, 
2-3 

certain 

two-dimensional lattice models, 
4-5 

and a many-body problem with 

particles in one space dimension interacting via a delta-function two-body 

potent ial. 
6-10 

It also provided the initial impetus in the studyof the Thirrmg 

model.fl The inverse scattering transform method of Gardner, Green, Kruskal, 

and Miura 
12 

was discovered as ameans of solving the Korteweg-DeVries 

equation. It was subsequently shown that a generalized inverse scattering trans- 

form 13-14 provided anexact treatment of a number of non-linear partial differ- 

ential equations with one space and one time coordinate ((1+ 1) -dimensional 

classical field theories). This method has been particularly valuable in expos- 

ingthe profound role and remarkable properties of solitons in these theories. 15 

Experience with both of these methods suggests that they and the phenomena 

which they expose are intimately related in a way which may be surmised 

intuitively but remains mathematically obscure. 

A natural laboratory is available for studying this question: the 

Galilean invariant theory of a complex scalar field 0 with quartic self- 

interaction, described by the Lagrangian 



-4-- FERMILAB-Pub-77/85-THY 

5?= ;Oi:To$-la*m I2-c lqq4 . 

As a classical field theory, the equation of motion obtained from (1. 1) 

is the “non-linear Schroedinger equation, ” 

i8,+ = - a12m +2c1$+12$ * (I. 2) 

This equation may be exactly treated via the inverse problem of Zakharov 

and Shabat. 
13 

On the other hand, we may consider the same Lagrangian 

for a quantum field a, 

2 = ; @::‘T@ _ (a a:; Im )(alm) - c~"~Pkm~ , 

which has canonical commutation relations 

C 
” 

co((x, t), Q (Y> t) 
3 

= 6(x - y) . 

(1.3) 

It is easy to show 
16 that (1. 3) is the field theoretic formulation of a 

many-body problem with the last term corresponding to a delta-function 

two-body potential. 
17 

In this form the quantized theory can be treated 

exactly by Bethels ansatz. 

The intuitive connection between the motion of particles embodied 

in Bethels ansatz and the behavior of fields which emerges from the 

inverse method can be illustrated by considering the case c < 0 (attractive 

coupling) and comparing the solitons of (1. 1) with the many-particle bound 

states of (1. 3). Using Bethels ansatz it can be shown 
9 

that a collision 

(1.4) 



-5- FERMILAB-Pub-77/85-THY 

of two bound states never results in redistribution or break up of the 

particles, e. g. if a 3-particle bound state with velocity v collides with a 
1 

5-particle bound state with velocity v2, they always emerge as a 3-particle 

bound state with velocity v1 and a 5-particle bound state with velocity v 
2’ 

having suffered only a phase shift or time-delay. This can clearly be 

identified with the remarkable properties of colliding solitons in the 

classical field theory. 
21 

More generally the form of Bethe’s ansatz 

can be understood by simply imagining a system of colliding billiard 

balls moving in one spatial dimension. I9 Common experience tells us 

that such a system exhibits a profound simplicity: the distribution of 

velocities is preserved in time. This conservation of velocity content is 

also a property of the quantum mechanical many body system (1.3) and 

is the essence of Bethe’s ansatz. We will find that this is closely related 

to the infinite number of conservation laws which are obtained in the 

classical field theory as a by-product of the inverse method. 
22 

For simplicity we will restrict our discussion to the case c > 0 

(repulsive coupling) and I &I 1 - 0 as x - * m. Thus we consider classical 

systems consisting of pure “radiation” (no solitons) and quantum systems 

composed entirely of elementary quanta. For c < 0, similar considerations 

can be applied to classical (quantum) systems containing solitons (bound 

states), but we will not do so here. The work of Zakharov and Manakov 23 

has shown that the inverse method for (1. i) can be formulated as a 

canonical transformation from the field variables d(x) and 4 (x) to a 
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set of action and angle variables P(5 ) and Q(5). Here 5 parametrizes the 

scattering data for an eigenvalue problem in which the canonical field 

configuration o(x) plays the role of scattering potential. We will find 

that 5 can be associated with the asymptotic momentum parameters ki 

which appear in Bethe’s ansatz. When written in terms of action and 

angle variables, the classical Hamiltonian corresponding to (1.1) is 

found to be independent of the angle variable Q(6). Therefore the conjugate 

momenta P(c) are conserved. The infinite number of constants of motion 

for the classical theory are just the moments of the time independent 

function P(g) which characterizes the system. By such considerations and 

by the results of a calculation described in Sec. III-D, we are led to 

propose that the quantum mechanical generalization of the Zakharov- 

Manakov action variable P(e) is the occupation number in the space of the 

momentum parameters of Bethe’s ansatz. This will be clarified and 

explored in Sec. III. As we will see, the assumption that the quantized 

action variables P(5) can be identified with the distribution of particles 

in the momentum parameter space of Bethels ansatz implies some 

remarkable properties of Bethels wave functions which can be studied 

directly. If this interpretation of P(c) is correct, it tells us that Bethels 

wave functions are eigenstates not only of the Hamiltonian, but of the 

entire infinite set of operators iii, (1 = 0, 1, 2, . . . ) obtained by writing 
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the conserved quantities Mp of the classical theory in terms of the fields 

::: i:: 
I$ and 4 and then replacing these by the quantized fields Q1 and Q1 with an 

appropriate ordering prescription. We will study explicitly the first 

four classically conserved quantities Ml. The operators $0 and l?I1 are 

particle number and momentum. 

(1. 5) 

4 
= $ = i ::: 

I mpx . 

(Here and elsewhere a subscript x denotes differentiation on the space 

coordinate. ) The N-particle Bethe wave functions 1 QN(ki, . . . , kN)>G ! *N(k)> 

are eigenstates of both, trivially, 

ii0 IY$,(kP = N (s(k)> 

ii1 I-+@)> = (kP 

The operator $2 is the Hamiltonian 

A :L ::: ::c M 
2 

=j$ = 1-t mxQx+C~@m dx 
I 

(i. 7) 

(1.8) 

(1.9) 

In Sec. III-C we review the seminal property of Bethe’s wave functions, 

Our derivation of (1. 10) differs from the usual in that it is carried out in 
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momentum space. It is inspired by the graphical approach 19 
to the 

Lagrangian (1. 3), and is more easily generalized to the higher moments 

A 
Me ’ I? 3. Finally, in Sec. III-D we consider the simplest operator 

moment which has not been previously studied, 

&3 
= (i )3 

iI 
$1: ::: i:: 

xxx 
m-3cmxmw dx . 

f 

Using a method which resembles the derivation of (l-10), we find that 

it31 %(k)> = Is(k)> < 

The combination of the familiar properties (1.7). (1. S), and (1. lo), with 

the result (1.12) provides considerable evidence for our interpretation 

(1.11) 

(1.12) 

of the quantized action variables and for the conjecture that Bethels wave 

functions are eigenstates of all the &,Is with eigenvalues 
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II. CONSTANTS OF MOTION IN THE CLASSICAL 
NON-LINEAR SCHROEDINGER EQUATION 

We will first review the relevant results from the inverse scattering 

transform (IST) analysis of the classical theory (1.1). For more detailed 

discussion we refer to the original papers of Zakharov and coworkers. 
13,23 

The IST for (l.l)is based on the solutions to the Zakharov-Shabat 

eigenvalue problem associated with the canonical field configuration 4(x, t) 

(t = time plays a passive role in this discussion and will hereafter be 

suppressed), 

(i & +WQi = -m%$ 

(i a--$ ;:; 
ax m2 = dcei . 

When the eigenvalue 5 is real, we can define the scattering data in 

terms of the solution X%(X, 5 ) with asymptotic behavior 

,5)---c e iEx/2 1 
x-m 0 0 . 

If we write 

qi(x, f) = e 
i5 x/ 2 

A(x, 5) 

e2(x, 5) = e-isx’2B(x, 6 1 , 

then the scattering data are defined by 

(2. la) 

(2. ib 1 

(2.2) 

(2.31 

(2.4) 
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a(5) = lim A(x, 6 1 
x- 

(2.5) 

b(5) = lim B(x, 5) 
Pm 

. (2. 61 

By writing (2. 1) as an integral equation and iterating in powers of 6, 

we can obtain A and B in explicit series form. Defining, for a given 5, 

g(x, y) = etx - y)e -iSy (2.7) 

(where f3 = step function), we get 

A(x, 5) = 1 +c dyldy2g(x, y,)4(y,)g”(y,, y,d’(y,) I 

+c 2 dyidy2dy3dy4g(x,y1)~(yZ)g*(y1,y2)~h(y2)g(y2’y3)~(y3)gB(y3,y4)~:)(y44) J 
+ . . . (2.8 1 

B(x, f) = -i& 
i/ 

::< 
dyi&, y,) 6 (y,) 

+ c / dyidy2dy3&x, y,&y, )g(y,, y2)6(y2)ga(y2. y3)+“(y3 1 

+ . . . 
t 

(2.9) 

The scattering data can be written in a similar form by letting x -f co, 
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-i5y 
a(5) = i+c 

/ dyidY2e 1oIYl)g~7Yi' Y2!47Y2) 

-icy1 
+c 2 

dyldy2dy3dY4e ~(y,)ph(Y*'Y2)~:':IY2)g(Si2.Y3)~(Y3)g‘~:(Y3,Y4!~~~(Y4) 

+ . . . (2. 10) 

ify ., ity 
b(g) = -ifi dyle ’ 6”(yi 1 + c/ dyldy2dy3e i $*(y*) 

g(y,, Y,M(Y,)g*(Y,. Y31b7Y3) + . . . . (2.11) 

Eqs. (2. 10) and (2. 11) map the fields o(x) and 4 (x) into a set of 

scattering data a@ ) and b(c ). An important aspect of the inverse method 

* 
is that this mapping can be inverted. Tbs fields o(x) and 4 (x) can be 

constructed from the solution to a Gelfand-Levitan-Marchenko integral 

equation whose kernel depends only on a(5 ) and b(E ). i3 For our purposes, 

we need only note that the scattering data describe the system at a given 

time just as completely as the original fields. (Recall that we are only 

discussing the case c > 0 with 1 6 1 -tm as x + *a . For c < 0 we would 

need additional variables to describe the soliton sector. ) 

The Poisson bracket of any two function&s (Y and p of the fields 

::: 
$and 6 is defined by 

{a,pt=i dx* “i -* “2 
1 [ 1 * (2.12) 

64 (x) 64 (x) 

From this it can be shown that 
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(a(O). b6’)) = ( 5 -<F _ i,) a(CIb(5’) . (2.13) 

This is most easily derived from Wronskian relations for the eigenfunctions 

of (2.1). 
23 It 1s also instructive to check it for low orders directly from 

the series expansions (2.10) and (2.11). From (2.13) and the similar 

relations 

(a(c), b”(c’)] = (k -;“, _ iE) a(c)b”(5’) (2.14) 

{a”‘(c), b(c’)) = (C -;y+ie) a”‘(5)b(5’) 

{a”(c), b*(F.‘)\ = (5 _ t, +iE) a’b(~)b”(5’) 

we find that the functions 

P(5) = $1, Ia(5)l 

Q(5) = -& arg b(5) 

have canonical Poisson brackets 

(P(E), QE’)t = 6(5 - 5’) . 

For c > 0 the function a(E ) is analytic and non-vanishing in the lower 

half 5 -plane and hence we may write 

i6 
lna(5) = y 

P(5 ‘)dC’ 
5’-5+ie ’ 

(2.15) 

(2.16) 

(2. 17 1 

(2. 18) 

(2. 19) 

(2. 20 1 
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The constants of motion can be obtained by comparing (2. 20) with another 

expression for In a(6 ). Writing 

Nx, 5 ) = e ux, 5 ) 
(2. 21) 

we can eliminate q2 from (2. 1) and obtain an equation for A’ = dX/ dx, 

42 (iL) +A~2+i~X’-c/~~2 = 0 . 

The solution of (2.22) can be expanded in inverse powers of 5, 

co 

X1(x, E ) = -ic 
1 

5 -Q -1 
f,(x) . 

Q =o 

The functions f Q are given by f. = 1 4 I2 and the recursion formula 

j+k=Q 

Integrating (2.23) and noting that lim X(x, 5) = In a(c), we obtain 
X--J 

expressions for the moments of P(c) which are polynomial in $J and its 

derivatives, 

& /E ‘P(S)dC = 1 fQ(x)dx zMQ . 

We list the first five. 

(2.22) 

(2. 23) 

(2. 24) 

(2. 25 1 
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MO = II 1 4 ‘dx 

/ 

::: 
M1 = i 4 4 xdx 

M2 
= Ci)2 /i $4”; 

XX 
-c 14 14)dx 

M3 = (i)3/($O”xxx - 3c+‘Kx41 $1”) 

M4 = (i)4f{b$“kxxx - ~$4~ IQ I2 - 6~$‘:~$ /d I2 

- 5c($“x)2~2 - 6c 1 bx I2 16 1 2 + 2c2 14 I”) dx . 

The Poisson bracket between any pair of moments vanishes, 

(Mi, Mjf = 0 for all i, j , 

by virtue of the first expression in (2.25). In particular, since M3 is 

the Hamiltonian, all of the Ml’s are constants of motion. 

(2. 26) 

(2. 27) 

(2. 28) 

(2. 29) 

(2.30) 

(2.31) 
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III. THE QUANTIZED NON-LINEAR SCHROEDINGER 
EQUATION AS A MANY BODY PROBLEM 

A. Many Body Wave Functions 

To construct eigenstates of the quantized Hamiltonian, we divide 

it into free and interacting parts, 

i;= 1 i 
::< :I: ;k clx -m xxm+ciP a ipm > E iZ,+G , 

At t = 0 the momentum space creation and annihilation operators atk 

and ak are defined in the usual way, 

/ 
dk ikx 

@P(x)= z;;e ak , 

(3.1) 

(3.2) 

and the N-particle plane wave eigenstates of Go are given by 

[ki, k2, . . . , kN> G atkiatk2 . . . akN [ 0, . (3.3) 

The states (3.3) will often be abbreviated as Ik>. Next, define the 

Moeller wave operator 

U(O, -m) = lim eiHte - iHOt . 
t-4 

The N-particle in scattering states are obtained by applying this operator 

to the plane wave (3.3), 

(3.4) 

IqN(k)> = U(0, - m)lk> (3.5) 
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We can now summarize the relevant results of Ref. 19. By writing 

the perturbation series for (3.5) and summing graphs, it can be shown that 

the states obtained are just those of Bethe’s ansatz. When computed from 

(3. 5), the wave functions 1 *N(k)> are obtained naturally in a cluster- 

decomposed form of Bethe’s ansatz whose terms can be associated with 

a set of dressed skeleton graphs. A skeleton graph contains N ” quasiparticle” 

lines drawn vertically without intersection and some number of “phonon” 

lines connecting pairs of quasiparticle lines. (An example of a four- 

particle graph is shown in Fig. 1.) In the billiard ball analog of the 

many-particle system, a quasiparticle is an entity which travels through 

the system at a constant velocity except for the small jumps (time advances 

or delays) caused by collision with other particles. The value of an 

undressed skeleton graph is given by the following rules: 

(a) a momentum pole (-i)(q - ie) -’ for each phonon of momentum q, (3.6a) 
r 

(b) an integration 
I 

de / 2~ over the momentum in each closed loop. (3.6b) 

We will choose a particular ordering for the asymptotic momenta of the 

plane wave in (3.5), 

ki < k2 < . . . < kN (3. 7) 

and draw the graphs so that these momenta read from left to right across 

the bottom of the graph. The phonon lines will then all proceed from 

left to right. If we define the set of integer pairs 
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&YN = ((i, j)/ i <j ‘N\ (3.8) 

we can associated a distinct pair of quasiparticles with each member of 

the set gN- 
In a skeleton graph, a given pair is connected either by 

no phonons or by one phonon. We can therefore designate a skeleton by 

its “collision set” $? which is a subset of gN containing a pair for 

each phonon in the graph. For example, Fig. 1 is denoted,by the set 

g = ((1, 2), (1, 3), (2, 3 ), (2, 4), (3, 4)). A skeleton graph for the 

wave function <p / qN(k)> will be written mp; $?). The dressing 

function of a skeleton graph contains a factor 

2 ic 
7.. = 

1J k i - kj - ic (3.9) 

for eachpair Ci, j)e %?, i.e., for each phonon in the graph. Finally, 

for notational convenience we absorb an overall 2rr x (momentum conserving 

6 -function) .in our definition of y(p; %? ). Thus, in comparison with the 

notation of Ref. 19, we make the replacement 

2n6(z ‘i-iki) A?(p; !z) + %p; SY) . 

With these definitions and preliminaries, we can write the many-body 

wave function as 

<p( wN(k)> = 

$?E yf t&J) 

3Yip; 59) m Tij ’ . 

(i,j)eg I 

(3.10) 

(3.11) 
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Here, $?( gN) denotes the power set of &?N, i. e. the set of all its subsets. 

9&?N) contains 2N(N-i)‘2 elements each corresponding to a distinct 

skeleton graph. The connection between (3.11) and the more familiar 

form of Bethe’s ansatz is discussed in Ref. i9. 

B. Constants of Motion 

Now that we have an explicit form for the N-body wave functions, 

we can study the operators l?I 
Q 

obtained by replacing the polynomial 

expressions of the classical theory, Eqs. (2. 26 )-(2.29 ), by their normal 

ordered counterparts, 

n 
MO 

=G= :li 1 @ mdx 

A 
M3 = (i)3 1 {@“xxx@ - ~c@“~Q”QQ} dx, etc. 

By particle number and total momentum conservation, it is obvious that 

/qN(k)> is an eigenstate of Go and ai with eigenvalues equal to the 

zeroth and first moments of the ki distribution, 

ii0 1 WN(k)> = w,,(k) IWN(k)’ 

iii [ *Nk)> = o,(Wl*N(W , 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3. 16) 

(3.17) 

where 
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N 

w,(k) : 
1 

k.’ 1 (3. 18) 

i=l 

A well-known but less obvious property of Bethe’s wave functions is that 

they are eigenstates of tie Hamiltonian, 

G2 1 *NW = w2(k) 1 qN(k)> (3. 19) 

Before discussing this property further, we note the obvious conjecture 

based on (3. 16), (3. 17), and (3. 19), 

iii, I-eNkP = oQ(k)(&N(k)’ . (3. 20) 

To make this conjecture completely definite, we shouId specify the 

ordering prescription by which G Q is defined. We will verify (3.20) for 

Q = 3 and find that normal ordering is the correct prescription, as was 

the case for Q 5 2. For Q > 3 the validity of (3.20) and the correct 

ordering prescription for 4 Q 
remain open questions. 

If we assume (3. 20) for all Q, it provides a basic link between the 

classical action variables PCS ) and the occupation number density in the 

k-space of Bethe’s ansatz states 1 eN(k)>. Let us define the operator 

p(k) = t Ua kakU -i 
(3.21) 

where U = U(0, -a) is the Moeller wave operator. Then from (3. 5), 

{ \E Q;(5)dS)I vN(kP = ~,(Wl.hN(kb (3.22) 
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Thus (3. 20) is just the statement that when the classical IST action variable 

P(c ) is quantized by replacing the polynomial (in 4 1 expressions for its 

moments by their quantum field counterparts, one obtains s(c ), up to a 

numerical factor ;l&. 

C. The Hamiltonian 

It is instructive to verify (3. 19 ) in momentum space, using the 

language of skeleton graphs. We begin with the skeleton expansion (3.11) 

and consider the application of the interaction Hamiltonian V to the wave 

function. This contracts together a pair of quasiparticle lines in a vertex 

which will be denoted graphically by a dashed line (see Fig. 2). Summing 

over pairs, we obtain an expression of the form 

<p 1 V 1 aN(k)> = 

Here, qj is a skeleton graph with the phonon (i, j 1 replaced by a dashed 

line, as in Fig. 2. More specifically, we can write a skeleton graph as 

zp; 9) = / 2 . . . 2 

( 

where L is the number of closed loops ar Id q Qm 
is the momentum of the 

phonon (Q, m). Then for each (i, j) E $?, the contracted skeleton graph 

qj is defined by 

(3.24) 
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( -i .) . (3. 25) 

(Q,m)eg 
qprn - 1E 

Also, in (3. 23) we have introduced the quantity 

~,~t%? = 1 if (i,j) 6 SF 

= 0 if(i,j)$$Y . 

Thus, an extra factor of 112 appears in the terms of (3.23) for which the 

dashed-line vertex (i, j) resulting from the interaction V contracts two 

lines which were already connected by a phonon. This factor emerges 

from the loop integration thus obtained, as discussed after Eq. (3.1) of 

Ref. 19. 

Next we observe that, in the sum over collision sets $? in (3. 23) 

there are ZNtNml I” terms which fall into 2 [N(N-1)/2]-1 pairs. In 

each pair of terms, one collision set contains (i, j) and the other does 

not, and they are otherwise identical. Thus each pair gives a sum of 

the form 

1 -k?- 7.. 2 lJ = (Q) Tij . 

The sum over such pairs can therefore be conveniently written as a 

sum over only those collision sets which contain (i, j ), giving 

(3. 26) 

(3. 27) 

<pi V fqN(kP = (-iNki - kj)~(p;~l n 

(Q,m)c%? 

(3. 28 1 
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To obtain the result (3.19), we consider the difference between the 

total energy w2(k) and the free Hamiltonian Ho acting on the wave 

function, 
N 

<e/b2(k) -HoI IQN(k)’ = c 
j=i 

(k;-pf)<pI*N(k)‘. 

Inserting the skeleton expansion (3.11) and factorizing the energy differences 

in(3.29). we obtain 

<p/b2W -HoI I*NW =yf x 
P j=* gff&gFT&?N) 

‘kj +ejHkj - pj) 

x me;%? 7T 
(Q,m).@ 

TQm * (3.30) 

The first symbol on the right hand side of (3.30) represents a symmetri- 

zation over the momentum variables p.. 
1 

In a skeleton graph, the 

momentum difference (p. -k.) is just the net momentum transferred 
3 J 

to the line j by all the phonons which attach to it. Using (3.24) and 

(3.25), this gives 

(kj-pj)mp:$?)=j% . ..% 1 9. - 
{Ql(j,Q)ee} JQ 
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Inserting this in (3.30) and collecting terms, we get 

<pj[o2(k) -Ho]jQ$k)> = 9 p ez, 
E N 

) 1 ,,$ ~!-i![ki+Pi)-(kj+Pj)l 
1,J E 

(3.32) 

The part of (3.32) involving (pi -pj) vanishes because qj(p; g) is 

symmetric under pi-p.. 
3 

Finally, we interchange the order of summation 

and obtain 
C- 

<p/[a2(k) -HollqN(k)> = 1 

i 

c 
(i,j)EgN $!QP(8N) 

(-i)(ki - kj) 3 (pie) 

(Lj)@ 

(3.33) 

This is identical to (3.28), proving (3.19). 

D. The Operator G3 

Using similar techniques we can now study the operator 6, which 

we divide into free and interacting parts, 

where 

and 

2 = $4) + $2) 
3 3 3 ’ 

2:” = -i/@zxxQdx, 

9;“’ = 3 ic/ +&@dx. 

(3.34) 

(3.35) 

(3.36) 
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(1) First let us consider the difference w3(k) - M3 acting on / QN(k)>, 

N 

<Pl[ 03(k) - M3 +]/QN(k) = 1 (k; -Pj) <pjqN(k)’ . 
i=l 

Proceeding by the same steps which led to (3.32) and using 

(k; -p;) = (ki-pi)(kf.+kipi+p;), 

we obtain 

(3.37) 

(3.38) 

(-i)[(kF+kipi+pF): 

(3.39) 

Symmetrization in p allows us to make the replacement 

(k;+kipi+p;) - (k;+kjpj+p;) + ; (ki-kj)[Z(ki+kj)+(pi+pj)]. (3.40) 

Working somewhat backwards in comparison with the previous section, 

we write, 

Tij =(G) (I+; Tijj . (3.41) 

Equation (3.39) thus becomes 
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<p /[w3(k) - $:“I /QN(k)> = 

it,““’ %?’ ~j@;$Fu{(i,.i)l) m 
(1 .mk$Y 

Tim . (3.41) 

I 

(2) 
The action of the operator M3 on the wave function is similar to 

that of the interaction Hamiltonian V, with an extra factor of 3(pi+pj)/2 

for the dashed line vertex. This gives a result similar to (3.23), 

<PIG3 (‘I [QN(k)> = c c 

( g?” 

(Ljk iTN $jT$GF( tTN) 

TPm * 
I 

(3.42) 

Combining this with (3.41) we get 

<p/[m3(k) -~,ljQNW = %zgN, 1 ci,zgN 2c[(ki+ 4) - (‘i+‘j)l 

1 “ij (GY) 
i > z ~j(p;%%I(id,l) lTgT~m * 

I 
(3.43) 

> 

The desired result follows from a property of skeleton graphs which is 

proven in the Appendix, 
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c aij ($$?) 

Wi+kj) - (pi+pj)l ($) ~j(p;~uI(i,j)~) = 0 . (3.44) 
(Ljk gN 

From this it follows that 

<P/[03(k)-%31/QN(k)’ = 0. (3.45) 

We have thus shown that the first four conserved quantities 

Ml, P 5 3, of the classical theory have normal-ordered operator analogs 

2, in t h e quantum theory which are also conserved. Moreover, all 

four of these operators are diagonalized by Bethels ansatz, i.e. they 

are diagonal in the basis of in scattering states IQN(k)>, with eigenvalues 

equal to the first four moments of the ki distribution. A study of the 

higher moment operators %I,, a> 3, is possible, using graphical tech- 

niques similar to those employed here. It seems apparent that a better 

understanding of the quantum mechanical significance of the recursion 

formula (2.24) would be desirable. It might be hoped that an investigation 

along these lines would lead to a clear physical interpretation of the 

inverse scattering transform in the context of quantum field theory. 
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APPENDIX 

To prove Eq. (3.44) we first recall the decomposition of a skeleton 

graph mp;g) into “ordered plane waves, ” (c.f. Eq. (4.15) of Ref. 19), 

N-l 

@(p;P) = N! 9 (2rr) 6 (Z,(p) - EN(k)) 
P 

7r 
-i 

P=l 
I 

@.I) 
Z,(P) - X,(Pk) - ie 

where 

Z,(P) = c Pi I L4.2) 
i=l 

e 
.zp(Pk) = 2 

i= 1 kP.J 
1 

(A.3) 

and (Pl,P 2 . . . PN) is some permutation of (1,2,. . . N). A skeleton graph 

y(p;g) can be written as a sum of ordered plane waves @(p;P) where 

P ranges over a subset n(e) of the permutation group SN. This subset 

is defined by 

n(i,j) = {PC SN/ (P-l)i > (P-‘)j}, (A.4) 

and 

n(g) = n n(i,j) . 
(i,j)H 

The decomposition of a skeleton graph is 

z-(p;G??) = x @(p;P). 
Pan@?) 

(A.5) 

L4.6) 
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The physical significance of this transcription is discussed in Sec. IV 

of Ref. i9. Here we use it to derive a similar relation for the contracted 

skeletons qj defined in (3.25). The latter can be written as a sum of 

contracted plane waves, which are defined by 

Qij (P;P) = N!q(zr) 6 (EN(p) - ZN(k)) 

dp! dp! 
+-b(P;+P;-Pi-Pj) 

-i 
Zp(Pp’) - x:,(Pk) - ie 1 ’ (A.7) 

where p;! =pp for 1 =# i,j. The integrand in (A.7) is understood to be 

symmetrized in p; and pj! (this removes the usual spurious divergence 

coming from a loop integral with a single phononi9). By contracting 

both sides of (A.6), we find 

(s) 

uij($i?) 

~j(p;~u!(Lj)l) = i Z 

P~rrrgP 
Qij(PGP) . 

The result (3.44) follows from the fact that 

1 
CL .i)EiiYN 

[(ki+kj) - (pi+pj)l mij(p;P) = 0, 

for any permutation P. We will demonstrate (A.9) for P = I = identity. 

Other permutations are treated in an identical way with trivial notational 

changes. By contour integration of (A.7), we find that aij(p;I) = 0 unless 

j=i+l, in which case 

(A.8) 

(A.9) 
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Qji,i+ 1 (~2) 3 Qi(p;I) = N! ~WWN(p) - CN(W 
P y:l1 [C,(p) --kl(k) - ie] ‘(A’lO’ N 

(J- + i) 

Next we write 

(ki+ki+l~pi~p~+l)~~~~~l(P~~~~~~(k)I~~C~+l(p)~~~+~(k~~~ 

(where X0 E O), giving 

(A.11: 

(ki+ki+l -P~-P~+~ ) ai (p:I) = N! ~6(~N(~) - IN 
P 

N-l N-l 
X 

(1 =#i,i+1) 

zl(p)l:tik)-ic] - lq [IZ1(p)-zl(k)-ic]! ’ (A*12 

(m+i-1,i) 

for i+l or N-l, and 

N-l 

(k, +k2 - pl -p2)Ql(p;I) =N!y(2~)6(~~(p) - ZN(k))(i) 
P “[ 

-i 
e = 3 ~lb)-~l(W-i~ I 

(A.13’ 

X 
-i 

zp (P) - C,(k) - ie 
I 

* (A.14 

(Note: for N= 3 the products in (A.13) and (A.14) are replaced by unity.) 
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From (A.12) - (A.14) it follows that 

N-l 

1 
(ki+ki+l-~i-~i+l)@i(p;I)= o, 

i=l 

(A.15) 

giving (A.‘?) for the case P = I. 
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Fig. 1: 

Fig. 2: 

FIGURE CAPTIONS 

A skeleton graph for the 4-particle wave function. 

A contracted skeleton graph. The dashed line 

represents an / @I4 Feynman vertex. 
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